

Apresentação do Estudo Básico de Viabilidade da Ferrovia Transcontinental Brasil-Peru

Capítulo 1 Introdução

Capítulo 2 Aspectos analisados no estudo básico de viabilidade

Capítulo 3 Conclusão do Estudo de Pré-Viabilidade

Capítulo 4 Faseamento da Execução e Operação do Estudo Básico de Viabilidade

Capítulo 5 Próximos passos

Antecedentes do projeto

Objetivo do Memorando de Entendimento

Realização de estudos básicos para analisar a viabilidade de uma conexão ferroviária bioceânica, em conformidade com seus respectivos arcabouços jurídicos, com base nos princípios de benefício mútuo e cooperação amigável.

MEMORANDO DE ENTENDIMENTO TRILATERIAL BRASIL, PERU E CHINA Maio - 2015

Tópicos analisados pelos três países

Tópicos elaborados pelo lado chinês:

- 1) previsão de demanda
- 2) análise de necessidade de implementação do projeto
- 3) alternativas de traçado
- 4) parâmetros técnicos da ferrovia
- 5) organização de transporte
- 6) requisitos básicos do projeto
- 7) infraestrutura adicional e apoio
- 8) plano de execução das obras
- 9) estimativa preliminar de investimento
- 10) análise de benefício financeiro
- 11) análise de riscos e grau de incerteza
- 12) visita de campo no Brasil e no Peru

Tópicos analisados pelos três países

Contribuições brasileiras:

- ◆ Apoio à visita de campo no Brasil
- ◆ Avaliação ambiental preliminar
- ◆ Encaminhamento de normas, legislação e projetos do setor ferroviário
- Apoio à coleta das informações necessárias à análise técnica e econômica
- ◆Transmissão de informações e experiências sobre projetos ferroviários brasileiros

Relatório do Estudo

Conforme estabelecido pelo MOU, estão previstos os seguintes relatórios:

A. Relatório Preliminar(Inception Report): Entregue no dia 7 de agosto de 2015

B. Relatório Intermediário: Entregue no dia 5 de fevereiro de 2016 (Versão preliminar)

C. Relatório Final: em andamento

Análise das alternativas

Segundo o MOU e o relatório preliminar, a rota básica do estudo seria a seguinte:

De Campinorte/GO, a Lucas do Rio Verde, Vilhena, Porto Velho, Rio Branco, estendendo-se até o Peru. No território peruano, estão sendo avaliadas 3 alternativas:

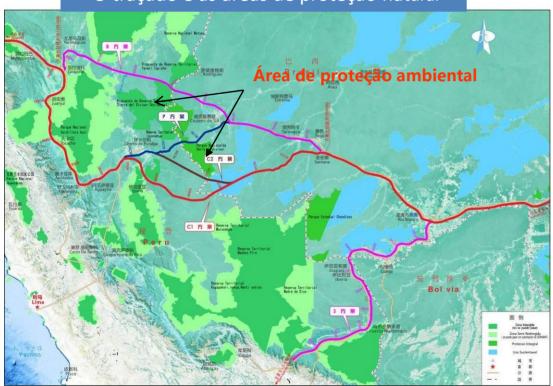
Alternativa Norte: A extensão total de 4.919 km, 3.290 km no Brasil e 1.629km no Peru, chegando ao porto de Bayovar.

Alternativa Central: A extensão total de 4.286 km, 3.290 km no Brasil e 996 km no Peru, chegando ao porto de Huacho.

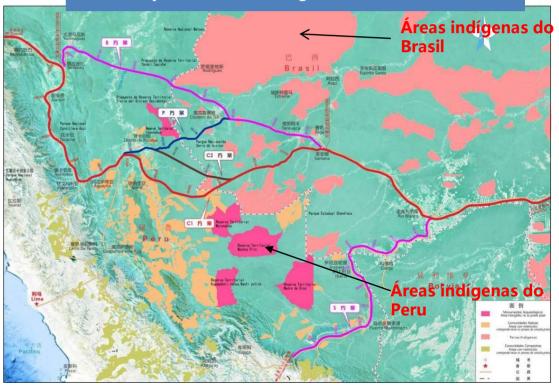
Alternativa Sul: A extensão total de 4.642 km, 2.970 km no Brasil e 1.672 km no Peru , chegando ao porto de Marcona.

Capítulo 1 Introdução

Composição de carga


Parte I: Produtos agrícolas, tais como soja e milho exportados do Brasil

Parte II: Produtos minerais extraídos na área de influência do traçado


Parte III: Fluxos de carga geral, tais como: contêineres, combustíveis, produtos industrializados.

Mapas das áreas ambientais e reservas indígenas

O traçado e as áreas indígenas e culturais

Capítulo 1 Introdução

Principais critérios técnicos

Tipo de tração

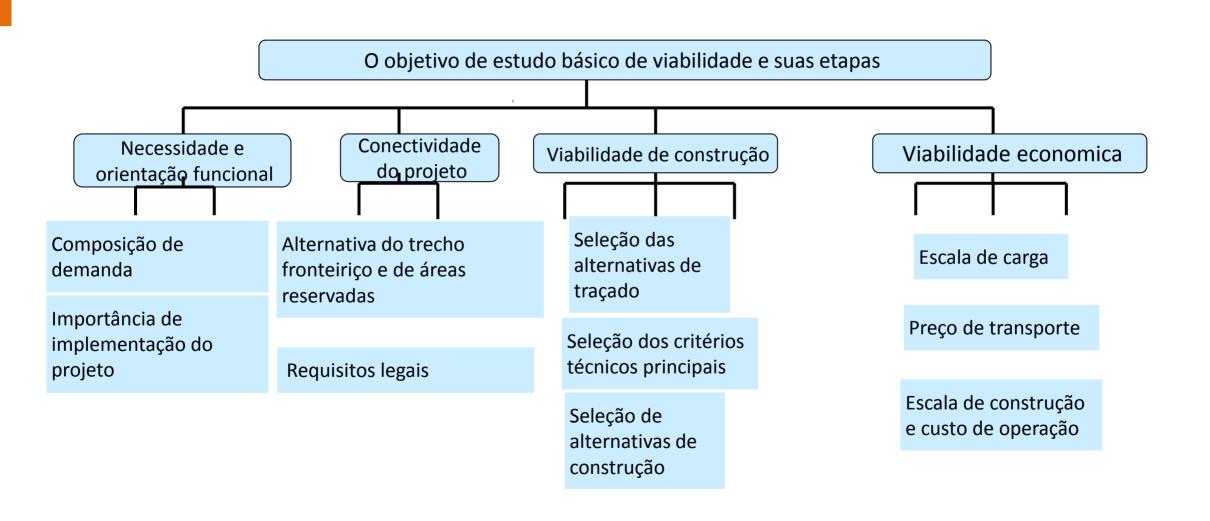
Tração diesel no trecho brasileiro Será definido depois de estudo de trecho montanhoso e trecho de planície no território peruano.

Bitola e carga por eixo

Brasil: Bitola de 1.600 mm, e carga por eixo de 32,5 t.

Peru: Bitola de 1.435 mm, e carga por eixo a definir.

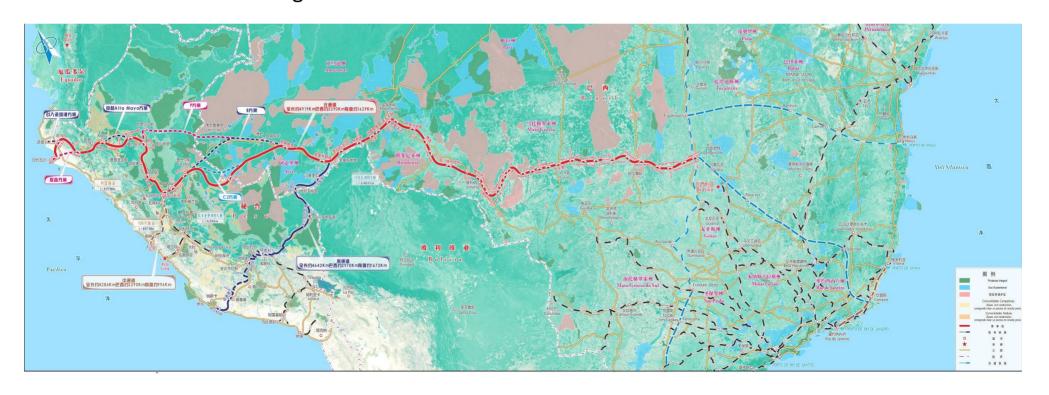
Capítulo 1 Introdução


Capítulo 2 Aspectos analisados no estudo básico de viabilidade

Capítulo 3 Conclusão do Estudo de Pré-Viabilidade

Capítulo 4 Faseamento da Execução e Operação do Estudo Básico de Viabilidade

Capítulo 5 Próximos passos



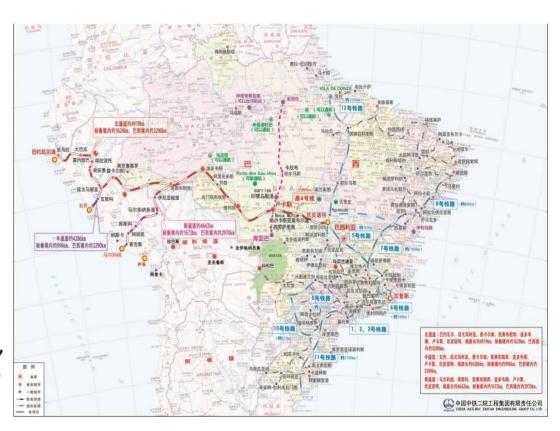
Traçado Preliminar (Aspectos Ambientais e Legais)

Distribuem-se várias áreas ambientalmente sensíveis (área de proteção ambiental e áreas indígenas). Há limitação muito rígida sobre as áreas referidas na Lei dos dois países. A conectividade ferroviária entre os países depende de: A viabilidade das alternativas do trecho fronteiriço; e A observância das normas legais.

Viabilidade de construção

Todas as alternativas no território peruano interceptam os Andes em diferentes níveis. A condição geológica é complexa, com topografia desfavorável, especialmente as alternativas Central e Sul. Do ponto de vista de viabilidade de construção, a melhor alternativa deverá cumprir as seguintes condições:

- Técnicas que atendam às exigências de topografia, às caraterísticas naturais de terreno e ao melhor desenpenho operacional;
- Técnicas que atendam às exigências geológicas da região por onde se desenvolve o traçado, visando à segurança e à fácil implementação do traçado.



Viabilidade econômica

O investimento e custo de operação têm relação com o volume de carga e o custo de construção. Assim, para tornar o projeto competitivo, tem-se como premissa principal a redução dos custos de transporte. Uma tarifa competitiva exige otimização dos custos de construção e operação.

Nesse sentido, a chave do estudo de viabilidade é a busca do ponto de equilíbrio integrado, considerando, benefício, investimento, volume de carga, preço de transporte, meio ambiente, condição técnica de engenharia, etc.

Capítulo 1 Introdução

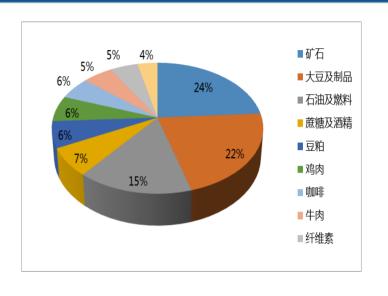
Capítulo 2 Aspectos analisados no estudo básico de viabilidade

Capítulo 3 Conclusão do Estudo de Pré-Viabilidade

Capítulo 4 Faseamento da Execução e Operação do Estudo Básico de Viabilidade

Capítulo 5 Próximos passos

Capítulo 3 Conclusão do Estudo de Pré-Viabilidade



Importância da implantação do projeto

Os principais produtos exportados de acordo com a balança comercial brasileira, em toneladas, são:

Minério-24% Complexo soja-22% Petróleo e derivados-15% Etanol e açucar-7%

Do ponto de vista logístico, o fator preponderante que limita a taxa de crescimento das exportações brasileiras é o transporte. As rotas de transporte atuais estão saturadas, se fazendo necessária a implantação de um grande corredor logístico, integrando diferentes modais.

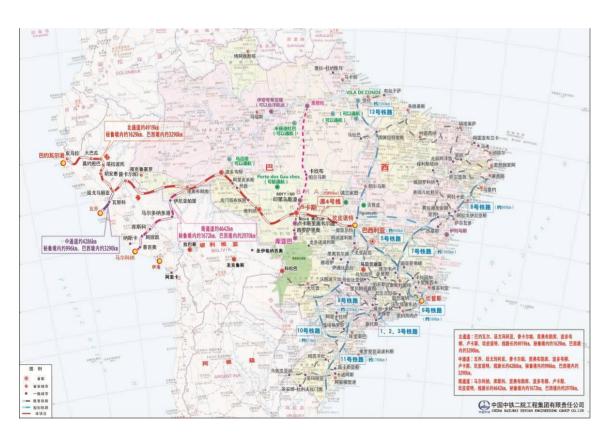
Peso de produtos exportados do Brasil em2014

Atualmente, o estado de Mato Grosso é o maior produtor de soja e derivados. Há um potencial de crescimento de áreas cultiváveis no estado, podendo chegar a uma produção de aproximadamente 90 milhões de toneladas.

O governo brasileiro sempre considerou este projeto prioritário para o desenvolvimento sócio-económico do país. Sua implementação promoverá o desenvolvimento econômico das regiões ao longo do traçado e sua área de influência.

Importância do projeto na América do Sul

A implementação do projeto irá fortalecer a interconexão regional, promovendo o desenvolvimento e integração de transporte e economia das regiões.


Para o Brasil: trata-se de um corredor de alta capacidade de escoamento dos produtos agrícolas do interior do país em direção ao Pacífico.

Para o Peru: trata-se do principal corredor de exportação e importação de minérios do Peru, sendo um canal logístico importante para promover o desenvolvimento de nordeste do Peru, e a rota terrestre do Peru para o Atlântico.

Viabilidade de construção

Foram consideradas as alternativas norte, centro e sul

Os elementos que afetam a diretriz e os seus pesos estão na tabela seguinte:

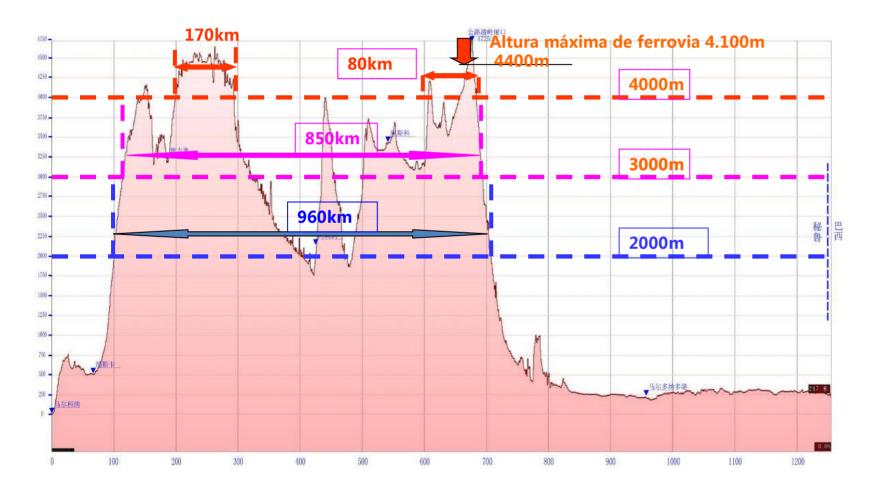
Número	Itens de comparação (f)	Peso (w%)
1	Escala de construção e investimento	8
2	Topografia e relevo	8
3	Condição geológica	12
4	Grau de difilculdade para implementação	8
5	Demanda de transporte e benefício sócio-econômico	12
6	Influência ambiental	12
7	Portos complementares	6
8	Riscos de segurança de construção e operação	12
9	Grau de difilculdade de operação e manutenção	8
10	Benefícios financeiros	8
11	Duração de construção	6
12	Total	100

A topografia ao longo da linha - Alternativa Norte

A topografia ao longo da alternativa norte é relativamente menos ondulada.

A altura máxima da estrada é de 2.137m e a altura máxima da ferrovia estudada seria de 2.050m, sendo relativamente baixa.

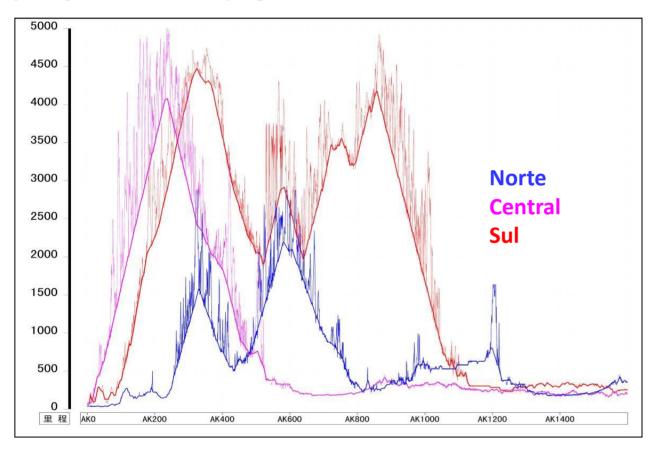
A topografia ao longo da linha - Alternativa Central



A topografia ao longo da alternativa central é mais ondulada.

A altrura máxima de estrada é de 4.737m, e a de ferrovia é de 4.100m.

A topografia ao longo da linha - Alternativa Sul

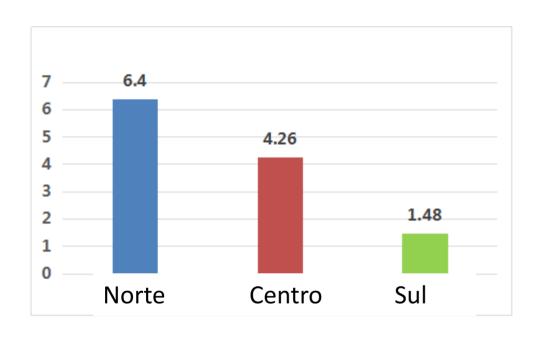


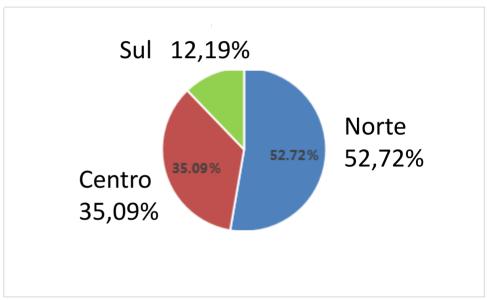
A topografia ao longo da alternativa sul é a mais ondulada dentre as opções estudadas.

A alternativa atravessa 5 vezes altitudes acima de 4.000m, sendo que o ponto mais alto é de 4.400m.

Comparação entre as topografias das alternativas estudadas

Na comparação geral de topografia, a **Alternativa Norte** é a mais viável.




Avaliação Geral

	Norte		Central		Sul			
Número (n)	Itens de comparação (f)	Pontuação do iten (f)	Pontuação atingida (F)	Pontuação do iten (f)	Pontuação atingida (F)	Pontuação do iten (f)	Pontuação atingida (F)	Peso (w%)
1	Escala de construção e investimento	8	0.64	9	0.72	1	0.08	8
2	Topografia e relevo	9	0.72	6	0.48	1	0.08	8
3	Condição geológica	6	0.72	3	0.36	1	0.12	12
4	Grau de difilculdade para implementação	8	0.64	4	0.32	1	0.08	8
5	Demanda de transporte e benefício sócio-econômico	4	0.48	1	0.12	3	0.36	12
6	Influência ambiental	5	0.6	6	0.72	2	0.24	12
7	Portos complementares	4	0.24	2	0.12	3	0.18	6
8	Riscos de segurança de construção e operação	9	1.08	3	0.36	1	0.12	12
9	Grau de difilculdade de operação e manutenção	7	0.56	4	0.32	1	0.08	8
10	Benefícios financeiros	6	0.48	7	0.56	1	0.08	8
11	Duração de construção	4	0.24	3	0.18	1	0.06	6
F	Pontuação total (T)	/	6.4	/	4.26	/	1.48	100
Diferenç	a de pontuação total (TC)	/	+4.92	/	+2.78	/	0	/
Grau	de superioridade (%)	/	52.72	/	35.09	/	12.19	/

Avaliação Geral

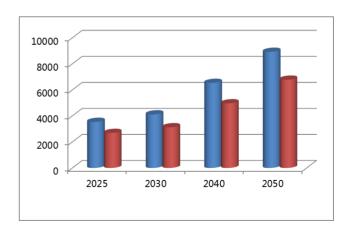
As 3 alternativas são viáveis do ponto de vista construtivo, mas a Norte apresenta mais vantagens, maior viabilidade e menos riscos de segurança.

Viabilidade econômica

Demanda

Alternativas	Fluxos semelhantes	Fluxos diferentes
Norte	1-Grão exportado do Brasil via portosperuanos2-Minério de ferro exportado do Brasil via	Rocha fosfática da região de porto Bayovar ao Brasil.
Central	portos peruanos. 3-Máquinas, eletrônicos, peças	
Sul	automotivas e outros materiais	Minérios do sul do Peru

Demanda


Previsão de volume de exportação de soja e milho de Mato Grosso no período de estudo unidade: milhões toneladas

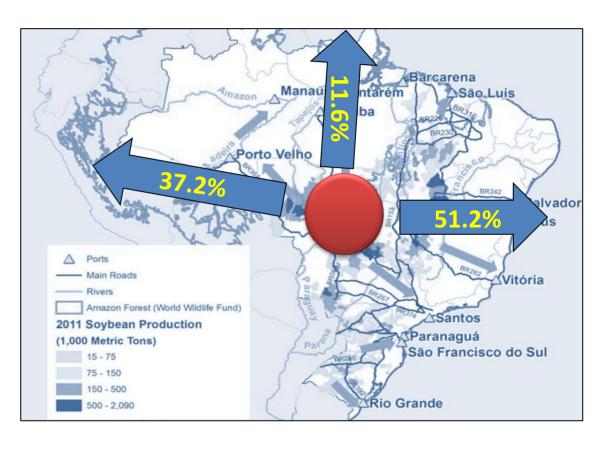
Produtos	Período(anos)	2025	2030	2040	2050
	Produção	34,45	38,56	54,39	69,63
Soja	Consumo doméstico	14,19	14,92	16,15	16,98
	Volume de exportação	20,26	23,64	38,24	52,65
	Produção	22,29	24,99	35,25	45,13
Milho	Consumo doméstico	7,11	7,48	8,10	8,51
	Volume de exportação	15,17	17,51	27,15	36,61
Total	Volume de transporte para exterior	35,43	41,16	65,39	89,26

Previsão de volume de exportação de grão de Mato Grosso à Região Ásia-Pacífico no período de estudo

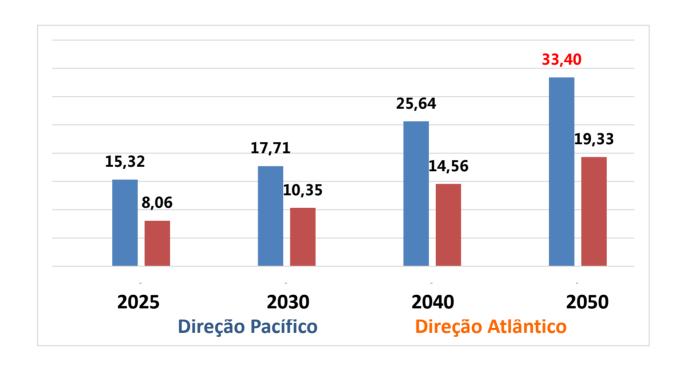
Unidade: milhões toneladas

Período(anos)	2025	2030	2040	2050
Volume de transporte de grão para exterior	35,43	41,16	65,39	89,26
Volume de exportação à Região Ásia-Pacífico	26,93	31,28	49,70	67,84

Volume de transporte


Volume total de transporte dos prodotos agrícolas de Mato Grosso Unidade: milhões toneladas

Ano	2025	2030	2040	2050
Exportação para Ásia e Pacífico	26,93	31,28	49,70	67,84
Corredor bioceânico	10,02	11,70	18,60	25,42


Outros tipos de carga do projeto

Unidade: milhões toneladas

Carga	2025	2030	2040	2050
Rocha fosfática	3,00	4,00	5,00	6,00
Carga geral	4,20	5,20	7,65	10,45
Total	7,20	9,20	12,65	16,45

Volume de transporte

A demanda do projeto no longo prazo no sentido do Pacífico alcança 33,4 milhões toneladas.

Capítulo 1 Introdução

Capítulo 2 Aspectos analisados no estudo básico de viabilidade

Capítulo 3 Conclusão do Estudo de Pré-Viabilidade

Capítulo 4 Faseamento da Execução e Operação do Estudo Básico de Viabilidade

Capítulo 5 Próximos passos

Faseamento do Plano de Construção

O segmento brasileiro tem uma extensão total de 3290km. Por esse motivo, propõe-se a implementação em cinco etapas:

Etapas	Segmento	Extensão	Ano de Início	Duração
		(km)		(Meses)
1	Lucas – Campinorte	890	Ano 1	60
2	Lucas - Vilhena	630	Ano 2	48
3	Vilhena – Porto Velho	570	Ano 3	48
4	Porto Velho – Rio Branco	560	Ano 4	48
5	Rio Branco – Fronteira Brasil- Peru	640	Ano 5	48
Total		3290	/	/

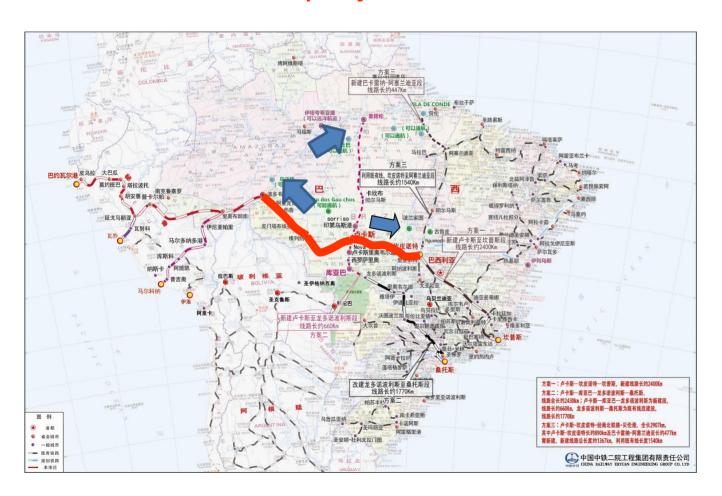
Capítulo 4 Faseamento da Execução e Operação do Estudo Básico de Viabilidade

Faseamento do Plano de Construção

segmento peruano tem uma extensão total de 1629km. Por esse motivo, propõe-se a implementação em cinco etapas:

Etapas	Segmento	Comprimento do Segmento	Ano de Início	Duração
		(km)		
1	Bayovar-Olmos	245	Ano 1	48
2	Olmos – Bagua Grande	234	Ano 2	60
3	Bagua Grande - Tarapoto	330	Ano 3	60
4	Tarapoto - Pucallpa	530	Ano 4	60
5	Pucallpa – Fronteira entre Peru e Brasil	290	Ano 5	48
	Total	1629	/	/

Faseamento do Plano de Operação



Primeira Etapa
Segmento do Brasil: Após a conclusão do primeiro trecho, a ferrovia se conecta com a Ferrovia Norte-Sul. O fluxo de mercadorias será realizado através da Ferrovia Norte-Sul, podendo chegar a diversos portos no Atlântico.

Contemplará intercâmbio ferroviário com a Ferrogrão.

Faseamento do Plano de Operação

Segunda Etapa

Segmento do Brasil: interligando-se com o primeiro trecho do projeto, o transporte de mercadorias será feito no sentido Oceano Atlântico, através da Ferrovia Norte-Sul.

Terceira Etapa

Segmento do Brasil: o terceiro trecho permitirá a ligação com Oceano Atlântico da seguintes formas:

- Ferrovia Norte-Sul e
- Acesso ao Rio Madeira em Porto Velho

Faseamento do Plano de Operação

Quarta Etapa Segmento do Brasil :

Comunicando-se com a primeira, a segunda e a terceira fase do projeto, o fluxo de carga para o Oceano Atlântico, tanto através do rio Madeira quanto pela Ferrovia Norte-Sul.

Quinta Etapa

Será implementada a quinta etapa da construção, conectando à linha peruana e iniciando sua operação plena.

Capítulo 1 Introdução

Capítulo 2 Aspectos analisados no estudo básico de viabilidade

Capítulo 3 Conclusão do Estudo de Pré-Viabilidade

Capítulo 4 Faseamento da Execução e Operação do Estudo Básico de Viabilidade

Capítulo 5 Próximos passos

Capitulo 5 Próximos passos

Desafios a serem superados:

- 1. Realizar pesquisa geológica e sondagem de terreno para dar suporte à definição da melhor alternativa de traçado, aprimorando seu design e otimizando o investimento;
- 2. Aprofundar a avaliação de impacto ambiental para determinar a razoabilidade do traçado;
- 3. Avançar nos estudos de viabilidade econômica e movimentação de carga para se estimar o custo e retorno do projeto;
- 4. Realizar análise de riscos a partir da definição do traçado;
- 5. Definir o modo de construção do projeto, seu faseamento da construção e o planejamento operacional;
- 6. Definir e implementar o plano de financiamento do projeto;
- 7. Estudar os portos de apoio da ferrovia;
- 8. Compatibilização das normas técnicas;
- 9. Estabelecimento de requisitos e procedimentos comuns para assuntos fiscais, aduaneiros, operacionais, tributários, sanitários, etc
- 10. Definição da melhor opção para a integração das diferentes bitolas;
- 11. Definições técnicas/operacionais do lado peruano.

Obrigado!