Energy

Solar futures at the foot of Everest

Passive solar homes could help to improve people’s daily lives and protect the environment on the Tibetan plateau, finds Cai Rupeng.
English

The summer had only just started, but village elder Yuzhen was already looking forward to winter. Standing in front of her home in Tingri, Tibet, one looks up and sees the snowy peak of Mount Everest, also known as Qomolangma. The house is only 40 kilometres from Everest Base Camp.

Winter used to be a lengthy ordeal for the villagers. High altitudes and thin air mean that the local climate is icy. Indoor temperatures at night drop below zero. “It is as cold inside as it is out,” said Yuzhen.

However, Yuzhen’s new solar home uses the ample Tibetan sunlight to reduce the reliance on dung for heating. “These solar homes not only improve the standard of living, but also help to protect the Everest region’s vulnerable ecology,” said Zeng Yan, the architect of the house, who is also chief architect at the Solar Buildings Insitute of the China National Engineering Research Center. “If this demonstration is successful, they will be used more widely.”

Tibet has the strongest and most frequent sunlight of any region in China. In an average year it enjoys over 3,000 hours of sunshine. However, residents need heating from mid-July onwards. A lack of natural resources means they rely on dung, wood and turf for fuel.

Yuzhen, like the other residents, spends a large part of her day gathering and drying dung before moving it indoors. Sometimes she will walk up the mountainside to collect firewood or turf, but ecological damage in recent years has meant that firewood was not being replenished and grass was not growing where turf had been removed.

Therefore, a typical household burns 300 bags of dung a year, totalling around 2,000 kilograms. Half of that needs to be bought. But dung is not an efficient fuel. “It only gives limited warmth,” said Zeng. “It also fills the room with smoke.” Coal is not mined in Tibet. Oil and natural gas are scarce: fuel is imported via a 1,000-kilometre pipeline from Golmud to Lhasa, but it is very expensive by the time it has been transported another 700 kilometres to the Everest region.

Therefore, the area become part of the “Mt. Everest Action at the Third Pole of the Earth” environmental protection programme, which has already provided funding to the world’s highest school and brought electricity to the world’s highest village.

In early 2009 the project completed a model of a “plateau ecological energy-saving building”, with the support of the China National Engineering Research Center for Human Settlements, the Department of Building Science at Tsinghua University and the Tibetan Science and Technology Association. Construction on the house started in April.

According to the project chief, Yang Yan, both wind and methane were initially considered as energy sources. However, both of these options had their limitations. “Wind power is limited by the direction of the wind, while methane is only flammable in a warm environment.”

On June 5, builders and volunteers installed the final piece of heat storage material, meaning that construction had been completed. “The three core technologies are insulation, heat gathering and heat storage,” said Zeng. The high costs of photovoltaic solar power meant that passive solar energy was used.

The designers examined the insulation in traditional Tibetan buildings, identifying weaknesses and making some improvements. In early studies, they found that traditional buildings provided insulation through the use of thick walls, but windows and doors allowed drafts to enter. Also, a simple weight-bearing structure meant that the roofs allowed in drafts.

Therefore, Zeng thickened the roof and carefully designed windows and doors that let in more light and improved insulation. The walls and the roof of the building include a house wrap membrane which keeps water out, but allows air to circulate. This adds no weight to the structure, but improves water and draft-proofing and provides better insulation. “It’s like a raincoat for your house,” said Zeng.

A glass hothouse was built on the sun-facing side of the building. The sun’s heat is trapped there, where it can be transferred to the rest of the house simply by opening internal doors and windows. The south-side of the building also features a heat collector, which uses the sun’s rays to warm air that is fed into the house. There are also two heat-gathering paved beds that store and slowly release heat. Large skylights in the roof heat the house and improve indoor lighting.

“Our tests show that annual dung usage will be cut in half. Indoor night-time temperatures during winter will be around 10 degrees Celsius, rather than the current zero degrees,” said Zeng.

In remote Tibetan areas, houses are normally built with whatever materials lie to hand. Little cost is incurred. The walls are usually concrete, stone or mud bricks, in descending order of cost. Concrete buildings are not eroded by the rain and are thus popular in more affluent villages. However, mud bricks have always been the most common building material, which farmers and herders can easily make at home.

Three “local principles” were identified at the start of the design process: retaining local building traditions, using local materials and using local labour. Therefore, the new building primarily uses mud bricks, rather than concrete. “We chose to combine a small quantity of key environmentally friendly functional materials with locally available materials,” said Zeng.

Even so, the locals would not be able to afford to build a house like this. A typical Tibetan villager earns an annual wage of 1,700 yuan (US$249). One of these homes costs around 60,000 yuan (US$8,779).

However, The Tibet Autonomous Region is attempting to reduce the costs of building homes for farmers and herders with subsidies of 10,000 to 25,000 yuan (US$1463 to $3658), along with discounted interest rates, preferential allocation of aid funds, loan support and funding from local government. Yang Yan said that the completion of Yuzhen’s home would be followed with efforts to encourage the wider use of these building designs, particularly in remote areas.

Cai Rupeng is a reporter for China Newsweek. This article first appeared in China Newsweek; it is used here with permission.

Homepage image by reurinkjan

-->
Cookies Settings

Dialogue Earth uses cookies to provide you with the best user experience possible. Cookie information is stored in your browser. It allows us to recognise you when you return to Dialogue Earth and helps us to understand which sections of the website you find useful.

Required Cookies

Required Cookies should be enabled at all times so that we can save your preferences for cookie settings.

Dialogue Earth - Dialogue Earth is an independent organisation dedicated to promoting a common understanding of the world's urgent environmental challenges. Read our privacy policy.

Cloudflare - Cloudflare is a service used for the purposes of increasing the security and performance of web sites and services. Read Cloudflare's privacy policy and terms of service.

Functional Cookies

Dialogue Earth uses several functional cookies to collect anonymous information such as the number of site visitors and the most popular pages. Keeping these cookies enabled helps us to improve our website.

Google Analytics - The Google Analytics cookies are used to gather anonymous information about how you use our websites. We use this information to improve our sites and report on the reach of our content. Read Google's privacy policy and terms of service.

Advertising Cookies

This website uses the following additional cookies:

Google Inc. - Google operates Google Ads, Display & Video 360, and Google Ad Manager. These services allow advertisers to plan, execute and analyze marketing programs with greater ease and efficiency, while enabling publishers to maximize their returns from online advertising. Note that you may see cookies placed by Google for advertising, including the opt out cookie, under the Google.com or DoubleClick.net domains.

Twitter - Twitter is a real-time information network that connects you to the latest stories, ideas, opinions and news about what you find interesting. Simply find the accounts you find compelling and follow the conversations.

Facebook Inc. - Facebook is an online social networking service. China Dialogue aims to help guide our readers to content that they are interested in, so they can continue to read more of what they enjoy. If you are a social media user, then we are able to do this through a pixel provided by Facebook, which allows Facebook to place cookies on your web browser. For example, when a Facebook user returns to Facebook from our site, Facebook can identify them as part of a group of China Dialogue readers, and deliver them marketing messages from us, i.e. more of our content on biodiversity. Data that can be obtained through this is limited to the URL of the pages that have been visited and the limited information a browser might pass on, such as its IP address. In addition to the cookie controls that we mentioned above, if you are a Facebook user you can opt out by following this link.

Linkedin - LinkedIn is a business- and employment-oriented social networking service that operates via websites and mobile apps.