Pollution

Seeing China’s pollution from space

US scientists have used satellite data to assess a decade’s worth of PM 2.5 levels. Angel Hsu, one of the team, explains what they found.
English

The Great Wall may not, after all, be visible from space – but Chinese air pollution is.

A team of researchers at Battelle Memorial Institute and Columbia University, in collaboration with Yale University, recently used satellite readings to produce data on fine particulate concentrations in Chinese provinces. While these satellite measurements are not perfect, they provide the first estimates of ground-level annual average concentrations of the pollutant PM 2.5 for all of China over the last decade.

PM 2.5 is the term for particulate matter measuring 2.5 microns or less in diameter and has become a focus of public safety campaigners in China in recent months. Fine particulates have the ability to penetrate human lung and blood tissue and can lead to asthma, cardiovascular disease and cancer.

How are the satellite measures of PM 2.5 derived? In short, scientific instruments aboard the satellites assess something called Aerosol Optical Depth (AOD). This is a measure of the degree to which aerosol particles prevent the transmission of light either through absorption or scattering.

Several studies have developed algorithms and models to relate the AOD measures to ground-based measurements of particulate matter. Of course, relating these atmospheric column measurements to ground-level measurements is tricky and depends on the vertical structure, composition, size, distribution and water content of the atmospheric aerosol. Therefore, regional differences and climatology also play a role in the extrapolation of PM 2.5. (The methods used to extrapolate PM 2.5 measurements are described in full here.)

The PM 2.5 concentrations are expressed in terms of average exposure by province or municipality. The population-weighted exposure for a specific province is calculated by multiplying the satellite-estimated PM 2.5 concentration for each grid cell by the percentage of the province population that lives within that grid cell and producing an average for all of the grid cells within a province.

This means that PM2.5 concentrations for more heavily populated areas within a province will count more towards the provincial average than the outlying or sparsely populated areas. This standard approach addresses the cases where, for example, there is relatively clean air over a large percentage of a province, but nobody lives there to be “exposed”, while a large proportion of the population lives in a small area with high PM 2.5 concentrations (or vice versa).

As a result, the population-weighted numbers are more telling of actual exposure to fine particulate matter. Simply put, these numbers represent an average air quality situation an average citizen in the Chinese province in question would face on any given day.

What do the measurements show?

The figures provided below reveal telling trends for PM 2.5 data in China. All but four provinces (excluding Taiwan) have average annual exposures to PM 2.5 above levels recommended by the World Health Organization (WHO). Figure 1, below, shows a map of population-weighted fine particulate matter concentrations in China’s 31 provinces in 2007. Most provinces exceed the WHO recommendation for PM 2.5 levels, which is set at an annual average of 10 micrograms per cubic metre.

Figure 1. Annual-average population-weighted fine particulate matter concentrations (PM 2.5) for Chinese provinces, including Taiwan, in 2007. 

The time series data provided in Figure 2 and Figure 3 offers an insight into PM 2.5 trends in different Chinese provinces. PM 2.5 concentrations are the highest in Shandong and Henan provinces. Beijing, Shanghai and Guangdong province have experienced slight decreases in annual average PM 2.5 levels over the last three years, although concentrations have remained fairly steady over the last nine years. Unsurprisingly, less developed western provinces such as Tibet and Inner Mongolia have the lowest fine particulate matter concentrations.


Figure 2. Nine-year time trend of average annual PM 2.5 concentration data for selected provinces and municipalities in China.

Of course, as with any type of modeling, there is an associated uncertainty. In particular, satellites aren’t as good at reading AOD over bright surfaces such as snow and deserts, and they also can’t tell you about vertical distribution of particles in the atmosphere (for example, they can’t distinguish particles high up or close to the surface). The uncertainty with the model we used is about +/- 25 percent, which translates into 6.7 micrograms per cubic metre.

Satellite measurements do not ultimately match up to data from earth: ground-based, in-situ measurements are ideal. However, satellite air-quality measurements can help to fill in spatial and information gaps where ground-based monitoring stations are not available. Furthermore, satellite measures provide consistent, repeated monitoring that allow for comparison over time and between areas. As Chinese policymakers face up to PM 2.5, data from space can help them understand what they are dealing with.


Figure 3. Nine-year time trend of average annual PM 2.5 concentration data for provinces and municipalities in China, including Taiwan. (Click to enlarge the image)


Angel Hsu is a doctoral student at the Yale School of Forestry and Environmental Studies and project director for the 2012
Environmental Performance IndexMap produced with funding from the NASA Earth Science Division Applied Sciences Program, by scientists at Battelle Memorial Institute with the guidance of CIESIN at Columbia University and YCELP at Yale University.

Homepage image provided by SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

-->
Cookies Settings

Dialogue Earth uses cookies to provide you with the best user experience possible. Cookie information is stored in your browser. It allows us to recognise you when you return to Dialogue Earth and helps us to understand which sections of the website you find useful.

Required Cookies

Required Cookies should be enabled at all times so that we can save your preferences for cookie settings.

Dialogue Earth - Dialogue Earth is an independent organisation dedicated to promoting a common understanding of the world's urgent environmental challenges. Read our privacy policy.

Cloudflare - Cloudflare is a service used for the purposes of increasing the security and performance of web sites and services. Read Cloudflare's privacy policy and terms of service.

Functional Cookies

Dialogue Earth uses several functional cookies to collect anonymous information such as the number of site visitors and the most popular pages. Keeping these cookies enabled helps us to improve our website.

Google Analytics - The Google Analytics cookies are used to gather anonymous information about how you use our websites. We use this information to improve our sites and report on the reach of our content. Read Google's privacy policy and terms of service.

Advertising Cookies

This website uses the following additional cookies:

Google Inc. - Google operates Google Ads, Display & Video 360, and Google Ad Manager. These services allow advertisers to plan, execute and analyze marketing programs with greater ease and efficiency, while enabling publishers to maximize their returns from online advertising. Note that you may see cookies placed by Google for advertising, including the opt out cookie, under the Google.com or DoubleClick.net domains.

Twitter - Twitter is a real-time information network that connects you to the latest stories, ideas, opinions and news about what you find interesting. Simply find the accounts you find compelling and follow the conversations.

Facebook Inc. - Facebook is an online social networking service. China Dialogue aims to help guide our readers to content that they are interested in, so they can continue to read more of what they enjoy. If you are a social media user, then we are able to do this through a pixel provided by Facebook, which allows Facebook to place cookies on your web browser. For example, when a Facebook user returns to Facebook from our site, Facebook can identify them as part of a group of China Dialogue readers, and deliver them marketing messages from us, i.e. more of our content on biodiversity. Data that can be obtained through this is limited to the URL of the pages that have been visited and the limited information a browser might pass on, such as its IP address. In addition to the cookie controls that we mentioned above, if you are a Facebook user you can opt out by following this link.

Linkedin - LinkedIn is a business- and employment-oriented social networking service that operates via websites and mobile apps.