Climate

Capturing and using CO2 is ‘false hope’ for climate change

Despite optimistic predictions, and continuing investment, plans to store and use CO2 remain unfeasible
English

Reducing CO2 levels will require a substantial shift from fossil fuels to renewable energy sources, but given that this is unlikely to occur soon enough to prevent significant climate change, other solutions may be needed. Carbon Capture and Storage (CCS) technology has been touted as a low-carbon approach – it involves removing CO2 from power plants and storing it underground.

While CCS may sound like an environmentally friendly alternative, there are significant drawbacks associated with the technology, including its heavy economic costs and the risk of seismic activity being triggered. Furthermore, in some countries, such as Germany and Austria, there are laws outlawing geological storage.

But rather than treating CO2 emissions as waste, some argue that they could be used to generate electricity or produce useful chemicals. Still in its development stages, carbon capture and utilization (CCU) technology could ultimately prove more sustainable than CCS. Possible ideas include storing CO2 in cement, or using algae to generate energy.

Some companies such as Calix, a Sydney-based Australian cement and minerals company, have been investigating ways to store CO2 in cement. According to Environment & Energy Publishing, global cement production accounts for roughly 5% of the world’s CO2 emissions. Calix’s solution for reducing CO2 emissions involves mixing treated lime with gasified fuel. This creates limestone and separates CO2 in the process, requiring only a fraction of the energy needed to make conventional cement.

Other studies point to the use of excess CO2 in the culturing of algae, which can then be converted into a carbon-neutral biofuel. A study conducted by the University of Texas at Austin found that algae (which requires CO2 and water) could potentially produce 500 times more energy than required for it to grow. However, given its water needs, growing algae in water-scarce countries like China might not be viable.

Even more radically, if CO2 could be used to produce more energy, this would obviously help reduce fossil-fuel emissions. A team of Dutch scientists led by Bert Hamelers published a report suggesting that the reaction between CO2 and water has the potential to generate an additional 1,570 billion kilowatts of energy annually. This corresponds to roughly 400 times the power produced by the Hoover Dam, which provides electricity for 1.3 million people in the United States.

Another approach, mineral carbonation, involves the reactions of magnesium or calcium oxides (typically found in industrial waste) with CO2 to release significant amounts of energy.

Despite enthusiasm amongst some scientists (and venture capitalists), there are still many doubts about the viability of both CCS and CCU. According to Peter Styring, Professor of Chemical Engineering and Chemistry at the University of Sheffield, CCU alone will not meet the demands of required carbon dioxide mitigation and can exist only as a complementary technology to CCS.

The low price of carbon also poses a significant challenge, says Michael Priestnall, CEO of Cambridge Carbon Capture. “At the moment it’s all technology push and no market pull. The market pull is either going to come from a decent carbon price, or from legislation and regulation on CO2 emissions,” said Priestnall. “At the moment, there aren’t sufficient commercial drivers for industry to do any CO2 sequestration.”

Given the uncertain futures of CCS and CCU, Ailun Yang from the World Resources Institue thinks it is important to encourage governments in their efforts to invest in sustainable energy systems. “Without political will to tackle climate change, it is difficult to develop a strong supportive framework.”

Sceptics such as energy analyst Chris Nelder are doubtful these technologies will ever become a commercial reality because of the high costs associated with capturing CO2. “By the time its proponents hope that it will be cheap enough to be commercially viable, renewable power will be cheaper,” he argues. Nelder also pointed out that the amount of carbon that can be captured and used doesn’t come close to the amount of CO2 we are emitting.

Organisations such as Greenpeace have argued along similar lines. Li Shuo, from the Greenpeace East Asia climate and energy team, has called CCS a “false hope”. According to Li, “We don’t have any established, mature and integrated CCS projects across the board.” He added that the storage technology is quite questionable at this moment. “There are great geological risks and no feasible way to decrease the enormous costs.”  

-->
Cookies Settings

Dialogue Earth uses cookies to provide you with the best user experience possible. Cookie information is stored in your browser. It allows us to recognise you when you return to Dialogue Earth and helps us to understand which sections of the website you find useful.

Required Cookies

Required Cookies should be enabled at all times so that we can save your preferences for cookie settings.

Dialogue Earth - Dialogue Earth is an independent organisation dedicated to promoting a common understanding of the world's urgent environmental challenges. Read our privacy policy.

Cloudflare - Cloudflare is a service used for the purposes of increasing the security and performance of web sites and services. Read Cloudflare's privacy policy and terms of service.

Functional Cookies

Dialogue Earth uses several functional cookies to collect anonymous information such as the number of site visitors and the most popular pages. Keeping these cookies enabled helps us to improve our website.

Google Analytics - The Google Analytics cookies are used to gather anonymous information about how you use our websites. We use this information to improve our sites and report on the reach of our content. Read Google's privacy policy and terms of service.

Advertising Cookies

This website uses the following additional cookies:

Google Inc. - Google operates Google Ads, Display & Video 360, and Google Ad Manager. These services allow advertisers to plan, execute and analyze marketing programs with greater ease and efficiency, while enabling publishers to maximize their returns from online advertising. Note that you may see cookies placed by Google for advertising, including the opt out cookie, under the Google.com or DoubleClick.net domains.

Twitter - Twitter is a real-time information network that connects you to the latest stories, ideas, opinions and news about what you find interesting. Simply find the accounts you find compelling and follow the conversations.

Facebook Inc. - Facebook is an online social networking service. China Dialogue aims to help guide our readers to content that they are interested in, so they can continue to read more of what they enjoy. If you are a social media user, then we are able to do this through a pixel provided by Facebook, which allows Facebook to place cookies on your web browser. For example, when a Facebook user returns to Facebook from our site, Facebook can identify them as part of a group of China Dialogue readers, and deliver them marketing messages from us, i.e. more of our content on biodiversity. Data that can be obtained through this is limited to the URL of the pages that have been visited and the limited information a browser might pass on, such as its IP address. In addition to the cookie controls that we mentioned above, if you are a Facebook user you can opt out by following this link.

Linkedin - LinkedIn is a business- and employment-oriented social networking service that operates via websites and mobile apps.