Climate

What use is dredging the Brahmaputra?

Sediments will flow into the Brahmaputra about as fast as the river is dredged, negating the whole point of the exercise which will cost billions of rupees for India
<p> [Photo shows the Brahmaptura by: Rita Willaert, CC BY-NC 2.0]</p>

[Photo shows the Brahmaptura by: Rita Willaert, CC BY-NC 2.0]

The Brahmaputra River has the second highest sediment yield per square kilometre (km) in the world, exceeded only by that of the Yellow River in China. India’s federal government and the state government of Assam have planned to dredge the Brahmaputra, with an initial amount of INR 4 billion (USD 57 million).

One purpose of this dredging is to reduce flooding by allowing more water to stay in the river. The second is make the Brahmaputra navigable for large vessels – the river has been designated National Waterway 2 by the Inland Waterways Authority of India. It is planned as a vital component of transboundary inland waterways transport between India and Bangladesh.

Before the dredging starts, it is important to understand the nature of sediment transport in the Brahmaputra, because the dredged-out river is likely to be filled up again, partly or completely.

Sediment load of the Brahmaputra

The sediment deposited in the Brahmaputra varies across its length. At Tsela Dzong in Tibet it is about 150 tons per square km. But as the river crosses the Himalayas and reaches Pasighat at the foothills of Arunachal Pradesh in India, the deposit increases tenfold to 1,495 tons per square km. This shows that the river gathers sediments from soft rocks and landslide-affected areas of the Himalayas. The Higher Himalaya Range contributes about 70% of the sediments of the Brahmaputra, as explained by S. Krishnaswami and K. Singh in the September 10, 2005 issue of the journal Current Science.

The Brahmaputra then flows through Assam – forming the Assam valley, with the high Himalayas in the north and the Meghalaya plateau in the south – before entering Bangladesh. As measured at a station in Majuli – the largest river island in Assam – the suspended sediment load is slightly higher at 1,513 tons per square km, higher than at Pasighat, due to the contributions from the rivers Dibang and Lohit, which also flow down from the Himalayas on the north bank of the Brahmaputra.

Since the Brahmaputra is a transboundary river, data on its water discharge and sediment load are classified and thus the public has no access. Researchers can get the data after a lengthy process and only if they pledge not to share the data in public.

Sediment loads are measured as both suspended load and bed load. Suspended load is the sediment being carried by the water at the time of measurement, while bed load is the sediment that has settled down on the riverbed. Old data – published despite the ban – reveal that on an average the Brahmaputra transported 402 million tons of suspended sediment annually between 1955 and 1979 at the Pandu measuring station in Guwahati, the largest city of Assam.

According to Water and Power Consultancy Services, the average annual sediment yield between 1978 and 1991 was 527 million tons at Pancharatna near Goalpara, just a little upstream of the place where the river enters Bangladesh from India.

But this average means little. During the monsoon from May to October, the Brahmaputra transports 95% of the annual suspended load at Pandu at an average daily rate of 2.12 million metric tons. It would need over 141,300 trucks – of 15 tons each – to carry this away.

Although suspended sediment is measured at a few stations on the Brahmaputra, no convincing attempt has been made to measure its bed load. Dulal Goswami wrote in the 1989 (15.1) edition of the Indian Journal of Earth Sciences that he had estimated the bed load using several empirical equations and concluded that the bed load at Pandu was of the order of 5-15% of the total sediment load of the river.

Why dredge the Brahmaputra?

Since suspended sediments form the majority of the load, will it be possible to maintain the dredged channel suitable for large vessels at the desired width and depth during the monsoon, when there is daily input of 2.12 million metric tons of sediments into the river?

And to what extent is this desirable? The authorities have stated that the main purpose of dredging the Brahmaputra is to prevent high flows from inundating its banks, which result in floods. But the valley of Assam has been created from the sediments deposited by floods of the Brahmaputra and its tributaries. During last two million years it has deposited 200-1,000 metre thick sediments by flooding and lateral channel migration.

Natural floods have several benefits besides increasing soil fertility. But artificial heavy floods have been created in Assam either due to breaching of embankments or sudden release of impounded water to keep dams safe. Such floods deposit enormous quantities of sterile sands rather than fertile sediments. For flood control, the solution should lie with improving or disbanding embankments and dams rather than with dredging.

Dredging seems to be a superficial answer to the challenge of drainage congestion and managing floods. Proper planning and a detailed study of the basic aspects of this government project are needed. A critical analysis of the data on both sediment input and dredging depth, together with a far better idea of the bed load, is necessary before starting this mega project.

-->
Cookies Settings

Dialogue Earth uses cookies to provide you with the best user experience possible. Cookie information is stored in your browser. It allows us to recognise you when you return to Dialogue Earth and helps us to understand which sections of the website you find useful.

Required Cookies

Required Cookies should be enabled at all times so that we can save your preferences for cookie settings.

Dialogue Earth - Dialogue Earth is an independent organisation dedicated to promoting a common understanding of the world's urgent environmental challenges. Read our privacy policy.

Cloudflare - Cloudflare is a service used for the purposes of increasing the security and performance of web sites and services. Read Cloudflare's privacy policy and terms of service.

Functional Cookies

Dialogue Earth uses several functional cookies to collect anonymous information such as the number of site visitors and the most popular pages. Keeping these cookies enabled helps us to improve our website.

Google Analytics - The Google Analytics cookies are used to gather anonymous information about how you use our websites. We use this information to improve our sites and report on the reach of our content. Read Google's privacy policy and terms of service.

Advertising Cookies

This website uses the following additional cookies:

Google Inc. - Google operates Google Ads, Display & Video 360, and Google Ad Manager. These services allow advertisers to plan, execute and analyze marketing programs with greater ease and efficiency, while enabling publishers to maximize their returns from online advertising. Note that you may see cookies placed by Google for advertising, including the opt out cookie, under the Google.com or DoubleClick.net domains.

Twitter - Twitter is a real-time information network that connects you to the latest stories, ideas, opinions and news about what you find interesting. Simply find the accounts you find compelling and follow the conversations.

Facebook Inc. - Facebook is an online social networking service. China Dialogue aims to help guide our readers to content that they are interested in, so they can continue to read more of what they enjoy. If you are a social media user, then we are able to do this through a pixel provided by Facebook, which allows Facebook to place cookies on your web browser. For example, when a Facebook user returns to Facebook from our site, Facebook can identify them as part of a group of China Dialogue readers, and deliver them marketing messages from us, i.e. more of our content on biodiversity. Data that can be obtained through this is limited to the URL of the pages that have been visited and the limited information a browser might pass on, such as its IP address. In addition to the cookie controls that we mentioned above, if you are a Facebook user you can opt out by following this link.

Linkedin - LinkedIn is a business- and employment-oriented social networking service that operates via websites and mobile apps.